An Adaptive Superpixel Based Hand Gesture Tracking and Recognition System
نویسندگان
چکیده
We propose an adaptive and robust superpixel based hand gesture tracking system, in which hand gestures drawn in free air are recognized from their motion trajectories. First we employed the motion detection of superpixels and unsupervised image segmentation to detect the moving target hand using the first few frames of the input video sequence. Then the hand appearance model is constructed from its surrounding superpixels. By incorporating the failure recovery and template matching in the tracking process, the target hand is tracked by an adaptive superpixel based tracking algorithm, where the problem of hand deformation, view-dependent appearance invariance, fast motion, and background confusion can be well handled to extract the correct hand motion trajectory. Finally, the hand gesture is recognized by the extracted motion trajectory with a trained SVM classifier. Experimental results show that our proposed system can achieve better performance compared to the existing state-of-the-art methods with the recognition accuracy 99.17% for easy set and 98.57 for hard set.
منابع مشابه
Applying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملA Survey on Superpixel-Based Hand Gesture Recognition Using Static Dataset
Hand gesture recognition framework got incredible consideration in the current couple of years in light of its complexness applications and the capacity to connect with machine productively through human computer interaction. With the large use of computers Human computer Interaction has become an important part of our daily life. The hardware devices like keyboard, mouse are used for the Human...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کاملReal-Time Hand Tracking and Gesture Recognition System
In this paper, we introduce a hand gesture recognition system to recognize real time gesture in unconstrained environments. The system consists of three modules: real time hand tracking, training gesture and gesture recognition using pseudo two dimension hidden Markov models (P2-DHMMs). We have used a Kalman filter and hand blobs analysis for hand tracking to obtain motion descriptors and hand ...
متن کاملVision-Based Application-Adaptive Hand Gesture Recognition System
With the increasing role of computing devices, facilitating natural human computer interaction (HCI) will have a positive impact on their usage and acceptance as a whole. For long time, research on HCI has been restricted to techniques based on the use of keyboard, mouse, etc. Recently, this paradigm has changed. Techniques such as vision, sound, speech recognition allow for much richer form of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014